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Abstract--It has recently been recognized that fault lengths (L) in natural populations follow power-law scaling. 
Such power-law scaling is observed in a wide range of tectonic settings in regions that have experienced differing 
amounts of total strain, and exhibit faults over a very large range of dimensions. In this paper we explore possible 
constraints on fault growth and linkage required to maintain power-law length scaling during progressive 
deformation. We first consider a fault growth model in which individual faults in a population grow by an amount 
AL ~ L e during slip increments (earthquakes), which have a recurrence interval r ~ L E. If an initial power-law 
length distribution is assumed for the population, it is found that the growth model exponents must be related by 
F - E = 1 in order to continually maintain the same scaling. If the requirement of constant moment release rate 
through time is also imposed, this implies that for large faults E = 2, which leads to a loss of power-law scaling 
with increasing strain, unless F - 3. Current mechanical models for growth of single faults by tip propagation 
propose E -> 1 and F = 1. Thus single-fault models are not consistent with observed power-law scaling. In a 
second model, fault lengths increase by growth specified by the first model, unless a nearby fault is encountered, 
in which case the two faults link. With this model, it is possible to produce a power-law distribution from a fault or 
flaw population that initially does not have a power-law distribution. Once a power-law distribution is developed, 
fault linkage causes the power-law exponent (C) to decrease as fault strain increases. 

INTRODUCTION 

Several recent field studies have demonstrated that fault 
populations have a power-law length distribution (Shaw 
& Gartner 1986, Gudmundsson 1987, Villemin & Sun- 
woo 1987, Main et al. 1990, Scholtz & Cowie 1990, 
Scholz et al. 1990, Davy 1993). In a fault population with 
a power-law length distribution, the number of faults 
(N) of length -> L is 

= , ( 1 )  N>_ L Lmax 

where Lma x is the length of the longest fault. Fault length 
data are usually evaluated on a log-log graph, in which 
case fault length (L) versus fault rank (N) data falls on a 
line with a slope of - C .  Previously published data 
suggest that C varies between 1.1 and 1.6 (Villemin & 
Sunwoo 1987, Main et al. 1990, Scholz & Cowie 1990). 
The data presented in Fig. 1 were collected from existing 
fault maps (five published geologic maps and three 
unpublished Amoco Production Company maps from 
the Gulf of Mexico), and suggest an even larger range of 
C (0.67-2.07). 

Fault length data are well described by power-law 
distributions; however, because fault mapping is not 
usually specifically performed for fault length analysis, 

the fault length data may be biased. At least two system- 
atic problems related to the mapping of fault traces may 
affect this data. In an incompletely exposed region, it is 
often difficult to interpret whether or not two fault traces 
separated by a covered area represent the same fault. 
Failure to recognize the connectivity of distinct fault 
trace exposures will result in estimates of C that are too 
high. Even a fault trace map of a completely exposed 
region may be systematically biased if the map rep- 
resents the loci of displacements greater than some 
threshold value. If the displacement profiles of faults are 
scale invariant, then larger portions of small faults will 
be unmapped compared to large faults. Consequently, 
the apparent C will be too low. In summary, while it is 
probable that equation (1) correctly describes fault 
length populations, the actual value and range of C, both 
here and elsewhere in the literature, is not as well 
determined. 

Total fault displacement also scales as a power-law of 
length (Walsh & Watterson 1988, Marrett & Allmend- 
inger 1991, Cowie & Scholz 1992b, Gillespie et al. 1992, 
Dawers et al. 1993): 

D oc L n. (2) 

Again, on a log-log graph, fault length (L) vs total fault 
displacement (D) falls on a line with a slope of n. The 
data presented in Walsh & Watterson (1988) and Mar- 
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Fig. 1. Eight fault length data sets derived from the maps published in the references given on the figure. Thin lines show 
the portions of the curves which fit lines with slopes of C. Because these data were collected from two-dimensional samples 
of three-dimensional volumes, equation (1) and the data in Fig. 1 describe two-dimensional fault populations. The actual 
(three-dimensional) power-law exponent for small faults is C + 1 (Marrett & Allmendinger 1991). Also shown are the areas 

(A) in square kilometers of the maps from which the data were collected. 

rett & Allmendinger (1991) fit equation (2) with n ~ 1.5. 
From theoretical mechanical arguments and smaller 
data sets Cowie & Scholz (1992a,b) and Dawers et al. 
(1993) suggest that n = 1.0 is more likely. 

The relationships in equations (1) and (2) are import- 
ant because they can be used to quantify fault-strain 
(Jamison 1989) within a region (e.g. Scholz & Cowie 
1990, Marrett & Allmendinger 1990, 1991). Uncertainty 
regarding the values of the exponents (C and n) cur- 
rently limits our ability to derive strain elements from 
fault populations. 

Most fault growth models (e.g. Cowie & Scholz 
1992c) examine the growth of an individual fault from a 
mechanical or seismological standpoint. Due to the 
short observational scale of seismological and paleoseis- 
mological studies, these models are impossible to test 
directly. The entire growth history of an individual fault 
cannot be examined. Rather, geologists are forced to 
look at fault populations that include a full range of 
sizes; therefore equations (1) and (2), which, though 
empirical, characterize real fault populations, may pro- 
vide the best constraints on fault growth. 

Two different models are presented in this paper. The 
first model considers growth of individual faults by tip 
propagation during slip events (earthquakes) in which 
each growth increment depends, in a simple and direct 
way, on the size of the earthquake and the length of the 
fault. We explore how fault growth by this mechanism 
affects the development of a fault population that in- 
itially has a power-law distribution of lengths. The 
second model incorporates fault linkage which depends 

upon spatial properties of the fault population as well as 
individual fault length. The second model addresses the 
establishment of a power-law distribution in an unde- 
formed region, and the evolution of that power-law 
distribution once established. In the following sections, 
the fault growth model refers to the process of fault 
lengthening by tip rupture (i.e. creating new fault 
length), whereas the fault linkage model refers to 
fault lengthening by coalesence with other faults (i.e. 
long faults formed by cannibalizing smaller faults). 

FAULT GROWTH MODEL 

In this section, an initial power-law distribution is 
assumed. Then, assuming a constant number of faults 
(no fault birth or death), equations are developed to 
describe a fault growth model which simulates slip 
events (earthquakes) that will maintain the population's 
power-law exponent. Although the following popu- 
lation fault growth model may borrow concepts and 
equations from single-fault growth models, the final goal 
of maintaining the power-law exponent may lead to 
different conclusions between population and single- 
fault models. 

Growth increment and recurrence 

Most single-fault growth models (Cowie & Scholz 
1992a,c, Gillespie et al. 1992, Walsh & Watterson 1992) 
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use the hypothetical convenience of the 'equivalent' 
earthquake which ruptures the entire length of a fault. 
Because real earthquakes seldom rupture the entire 
fault, the equivalent earthquake may represent a com- 
posite of many earthquakes, which in combination slip 
the entire fault surface. In this case, the equivalent 
earthquake represents a complete seismic cycle of a 
fault. Because of the difference between real and equiv- 
alent earthquakes, a fault growth model may not expli- 
citly satisfy a power-law distribution of earthquakes 
(Gutenburg & Richter 1954, Aki 1981, Turcotte 1992) 
although that issue is explored by Cladouhos (1993). 

An equivalent earthquake causes a fault to lengthen 
by an amount AL: 

L F  = L i  + AL, (3) 

where L i is the fault length before the event and Lfis the 
fault length after the event. To model the growth of 
faults within a population, two major assumptions about 
the equivalent earthquakes must be made. Firstly, a 
model for the growth increment, AL, must be assumed. 
In this paper a general growth model is explored: 

AL = 2L F, (4) 

where 2 and F are constants. 
The value of F in equation (4) can be analytically 

determined by adopting a specific fault growth model. 
For example, Marrett & Allmendinger (1991) and 
Gillespie et al. (1992) developed a fault growth model 
based on an arithmetic series, in which the difference 
between successive slips depends linearly upon the total 
number of slip events that have occurred on the fault. In 
that case, AL will depend upon the square root of fault 
length (F = 0.5), and total fault displacement is scaled by 
n = 1.5. Gillespie et al. (1992) argue that because the 
stress intensity factor at the tip of a fault in an elastic 
medium is also dependent upon the square root of fault 
length, their model has a mechanical basis. Meanwhile, 
Cowie & Scholz (1992a) consider the inelastic defor- 
mation at the fault tip (the process zone) to control fault 
growth. Their model, which is based upon a cohesion 
zone model for the crack tip (Dugdale 1960), gives a 
linear relation between AL, L, and D (F = 1, n = 1). It is 
not the purpose of this paper to choose between these 
competing single-fault models, but to test both for 
consistency with power-law fault length distribution. 

The second assumption involves the recurrence inter- 
val (r) of the equivalent earthquake. Again, the most 
general case is explored and the recurrence interval is 
written as: 

v = rKL E, (5) 

where rk and E are constants. Note that equation (5) 
implies the following relationship between slip rate (tJ) 
and fault length: fi - L 1-E. 

Equations (4) and (5) define the fault growth model 
due to slip events. Note that the fault growth exponents 
F and E are unrelated to C, the exponent that describes 
the power-law size distribution of the fault population 
(equation 1). 

By assuming that the recurrence interval of an indi- 
vidual equivalent earthquake (102-103 a) is small com- 
pared to the total age of a fault (>106 a) (i.e. Cowie & 
Scholz 1992c), and writing a differential equation we can 
solve for fault growth as a function of time: 

dL _ AL _ 2L F 2 LF_E. (6) 
dt r rk---ff ~ = r~ 

Before integration, the form of equation (6) can be 
further specified by assuming that the power-law distri- 
bution described by equation (1) is maintained as the 
individual faults in a population grow. Because the rank 
(N) of a fault will not change as it grows, the ratio 
between any two fault lengths will remain constant. If 
the superscripts in the equation below represent the A th 
and B th longest faults, equation (1) can be used to write: 

LA(I)I-C=(LA(t  + At)l-c 
Ls(t)} ~LB(t + At)} (7) 

where At is an increment (not necessarily infinitesimal) 
of time. Using equation (6), equation (7) can be re- 
written as 

LA + AlL At L A + ~-- L F-e At 
L a _ v _ ~k  

L a LB+AILAt  LB+ 2_LF_ EAt 
T k 

(8) 

The equality in the above equation is insured only if 

F -  E = 1. (9) 

Thus, a relationship between the growth increment and 
the recurrence interval has been established. The results 
of simple numerical modeling shown in Fig. 2 confirm 
that the relation in equation (9) is necessary to insure 
that a power-law length distribution is maintained for a 
population of growing faults in which there are no fault 
births or deaths. As shown in Fig. 2, other relationships 
between F and E produce populations that cannot be fit 
by a line in log-log space. 

Integration of equation (6) for the special case of 
F - E = 1 gives: 

L(t) = Lo exp (2~) (10) 

Given the assumptions of the population fault growth 
model--no fault deaths or births, and constant power- 
law length distribution--fault growth must be exponen- 
tial with time. A further constraint on the fault growth 
model can be made by requiring that the moment release 
rate, which is a measure of strain rate, remain constant. 
The seismic moment (M0) of an earthquake occurring on 
a fault of length L is: 

Mo =/~aLZW, for large faults, and ( l la)  

Mo =/~aL3Qd4), for small faults ( l lb)  

where/~ is the shear modulus, a a constant that relates 
earthquake slip and fault length (u = aL, Kanamori & 
Anderson 1975) and W is the dimension of the fault 
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Fig. 2. Results of four runs of a simple numerical model to simulate a 
population of growing faults. The critical assumption of the numerical 
modeling is that all faults in a population are actively growing; i.e. 
faults do not die. The initial (assumed) population (far left line) 
contains 100 faults, the longest fault is 400 units long, and the power 
law exponent is Co = 1.5. The choice of Co is arbitrary; the results do 
not depend on the value of C0. The other four curves represent 
possible fault populations after on the order of one thousand 
equivalent earthquakes on each fault. The growth increment for each 
fault was specified by equation (4), and the value of F shown on the 
figure. Recurrence interval for each fault was specified by equation (5) 
and the value of E specified on the figure. These four runs and 
numerous others (Cladouhos 1993) confirm the assertion in the text 
that F - E = 1 (bold lines) is necessary to maintain a power-law 

distribution. 

plane perpendicular to the slip direction (plate thick- 
ness). For  a steady-state deformation, the total moment  
release rate for a fault population should remain con- 
stant. This requires that each fault in the population 
must have a constant moment  release rate (M0) also. 
The seismic moment  and the moment  release rate for 
each fault are related by its recurrence interval: 

M0 
T = -~-- .  ( 1 2 )  

M 0  

Substituting equation (11) into equation (12), and 
recasting in the form of equation (5) gives 

izaW for large faults and (13a) E = 2 and "/'k - -  / ~ 0  

_/zaer for small faults. (13b) E = 3 and rk-- 4M ° 

The relation shown by equation (9) uniquely specifies F 
as well. If a constant moment  release rate is required, 
F = 3 for large faults and F = 4 for small faults. 

DISCUSSION OF FAULT GROWTH MODEL 

The model developed here is an important departure 
from single-fault growth models. For  example, in the 
Cowie & Scholz (1992c) model,  the exponents for a fault 
that grows under constant slip rate are F = 1 and E --- 1. 

If constant moment  release rate is required, then F = 1 
and E = 2 for large faults. However,  as shown by the 
curve for F = E = 1 on Fig. 2, that modelds  not 
consistent with a power-law distribution of fault lengths. 
This is because the relatively long recurrence intervals 
for long faults limits their growth compared to smaller 
faults. After a time increment the fault population curve 
becomes non-linear on the log-log plot, and the overall 
slope steepens. 

On the other hand, a constant moment  release rate 
population fault growth model implies growth incre- 
ment exponents (F = 3 or F = 4) and recurrence interval 
exponents (E = 2 or E --- 3) which are much higher than 
any single-fault growth model has suggested. Thus, 
current mechanical models for the growth of individual 
faults may not be consistent with power-law distri- 
butions of fault lengths. In other words, some other 
mechanism of fault lengthening must be operating in 
addition to incremental tip growth during repeated slip 
events. 

The apparent discrepancy between single-fault 
growth models and population fault growth model pre- 
sented here might be resolved by rejecting one or more 
of the assumptions used to formulate the fault popu- 
lation model. First, some faults in the population could 
cease to be active during deformation (i.e. faults could 
die) or new faults could nucleate during deformation 
(i.e. fault birth could occur). Second, the power-law 
scaling exponent C need not remain constant through- 
out deformation. If C is allowed to increase with 
accumulating fault strain, then F - E < 1 is a feasible 
solution; however, fault length data will no longer 
strictly fit a line in log-log space (i.e. Fig. 2). Third, if 
faults do not grow under steady state deformation con- 
ditions (constant moment  release rate), the unreason- 
able values of the exponents (F = 3, E = 2 for large faults 
and F = 4, E = 3 for small faults) need not be enforced. 
If the moment  release rate is allowed to increase, then 
lower values of F and E can be chosen (i.e. F = 1, E = 0). 
Fourth, individual fault growth cannot be specified by 
scale invariant equations (equations (4) and (5)) that do 
not depend upon a fault population's spatial properties. 
For example, other processes which depend upon the 
spatial distribution of the faults, such as fault linkage, 
may be responsible for maintaining the power-law distri- 
bution. 

FAULT LINKAGE MODEL 

Background 

In the previous section, initial power-law distributions 
were assumed, and the evolution of a model population 
of growing faults examined. In this section, to explore 
how power-law distributions are initially developed, an 
initial distribution that is not power-law distributed is 
assumed. This is based on a fundamental mechanical 
concept of rock mechanics, Griffith cracks, which may 
introduce a length scale. This theory, first proposed by 
Griffith (1920, 1924) holds that ubiquitous microfrac- 



Fault growth and linkage models and distributions of fault length 285 

tures cause rocks to be much weaker than their theoreti- 
cal strength. More recently, it has been accepted that 
macroscopic rock fracture occurs due to the coalescence 
of Griffith cracks (i.e. Suppe 1985, p.159). Like macro- 
fractures and faults, microfractures (1-100 microns) 
may be power-law distributed (Wong et al. 1989). One 
purpose of this section is to show that in some instances, 
a power-law length distribution can result from a popu- 
lation that is not initially power-law distributed. For the 
model constructed below, Griffith cracks (flaws) are 
assumed to have a unimodal distribution. This is consist- 
ent with stress tests on Westerly granite, which showed 
that biotite grains, the lengths of which are normally 
distributed, were often the locus of microcracking (Tap- 
ponier & Brace 1976). This finding is also used to justify 
the assumption that flaws are pre-existing weaknesses 
within a rock which may be activated by deformation, 
but are not created by the deformation. 

To develop a power-law distribution of faults from a 
unimodal length distribution of flaws, an uneven growth 
process is necessary. We hypothesize that fault linkage 
provides the mechanism for faults to grow unevenly, and 
thus causes fault populations to develop power-law 
length distributions. In this section, a simple model that 
starts with a unimodal distribution of flaws is developed. 
In each slip event, the length of a fault increases by one 
of two mechanisms: if another fault tip is nearby the two 
faults link, forming a much larger fault (Fig. 3); other- 
wise, the fault propagates as discussed in the previous 
section on Fault Growth Models. Because explicit nu- 
merical modeling of a mechanical system containing 
hundreds of faults would be extremely complex, we use 
simple geometrical rules, based on mechanical concepts, 
to model the fault interactions. 

Fault linkage has been well-documented in the field 
(Segall & Pollard 1983, Martel et al. 1988, Childs et al. 
1990, Martel 1990, Peacock 1991, Peacock & Sanderson 
1991). Martel et al. (1988) and Martel (1990) describe a 

three-stage evolution of outcrop-scale faults within 
Sierra Nevada granites; the faulting begins with jointing, 
then progresses to slip on small faults, and evolves by 
fault linkage to form larger fault zones. We consider the 
fault linkage process to be scale invariant; faults of all 
sizes link to form larger faults. 

Pollard & Segall (1987) give a formula in polar coordi- 
nates (r, 0) for the stress near the tip of a fault in elastic 
material: 

oij~Aon(2r)fij(O), (for r < L), (14) 

where Aon is the driving shear stress on a mode II crack, 
and fii(O) a trigonometric term that depends on the 
stress component. Note that in equation (14) the elastic 
stress is a linear function of fault length (L). 

The linkage model 

The purpose of the linkage model developed in this 
section is to investigate the effect of linkage on length 
distributions of fault populations. The model's purpose 
is not to accurately model the mechanics of fault linkage. 
We take a simplistic approach to linkage and assume 
that the elastic stress field produced by a fault, which 
according to equation (14) depends upon fault length, 
can influence the behavior of nearby faults. We assume 
that when two tips are close enough to elastically 'feel' 
each other, the elastic stresses are increased so that the 
faults 'attract' each other. 

A simple criterion is used to determine whether two 
fault tips are close enough to link. For the purpose of the 
model, a circular region of radius rm~ located at the tip 
of the fault is defined (Fig. 3). If another fault tip is 
located within that region, the faults will link (Fig. 3a). If 
another fault is not located within that region, the fault 
will propagate by the mode discussed in the previous 

(a) 
L 

(b) L 
I- 

' r sultant au;  
OR 

Fig. 3. Schematic description of the fault linkage model. (a) If another fault tip occurs within a circle of radius r , ~ ,  the two 
faults will link. In order to simplify the model, the resulting larger fault, shown by the long dash-short dash line, is 

straightened. (b) If no tip occurs within the radius, the fault will propagate forward a distance of AL. 
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section (Fig. 3b). In the fault growth model of the 
previous section, fault growth due to a single event 
depended upon a variable power (F) of fault length. We 
propose that any criteria for linkage should be depend- 
ent upon the same variable exponent: 

r m a  x = k L  F'. (15) 

where k is an adjustable parameter which controls the 
radius of the search circle shown in Fig. 3. 

Of course, real fault linkage is much more compli- 
cated. Firstly, the shape of the elastic field around a fault 
tip is not circular as portrayed in Fig. 3 (Pollard & Segall 
1987); however, for the purpose of examining a hypo- 
thetical fault population with random locations, the area 
enclosed by a specific elastic stress contour (not the 
shape of the contour) should be the controlling factor. 
Secondly, if a fault tip grows into the compressional field 
of another fault, the fault tip may be 'repelled'. This 
possibility is not modeled. Lastly, in this model, faults 
only link at the tips; real linkage may occur after the fault 
tips have overlapped (Peacock 1991). 

The actual linkage model is a 650 × 650 grid initially 
populated with 500 five-unit-long flaws (Griffith cracks) 
with random locations (Fig. 4a~top) .  To limit the effect 
of the lateral boundaries, a periodic boundary condition 
is used: a fault that grows and hits the right edge re- 
emerges at the left edge and vice versa. During each step 
of model time a flaw may grow by either tip propagation 
(equations (4) and (5)) or by linkage (Fig. 3a). For the 
purpose of this model, a fault is formed when two flaws 
link. The necessity for this distinction between flaws 
and faults is shown in Fig. 5(a). All flaws initially have 
the same length, as is shown by the vertical line labeled 
tO in Fig. 5(a). After each step of model time, all 
unlinked flaws will have grown by the same amount 
because the flaw growth rate depends on flaw length. 
Thus, unlinked flaws will maintain a unimodal distri- 
bution (i.e. C = o0) as shown by the vertical lines in Fig. 
5(a). At each step of model time, some flaws may 
coalesce with other flaws to form much longer faults. 
Due to continued linkage, the faults grow much faster 
than the flaws and form a power-law distribution with C 
between 6.7 and 0.9. If flaws and faults are not separated 
and a linear fit attempted on both flaws and faults, the 
value of C would always be large and dominated by the 
flaws. 

The values of the growth increment and recurrence 
interval exponents (F and E) will affect the size distri- 
bution that results from a run of the fault linkage model. 
In order to isolate the effect of linkage on the power law 
exponent C, a population fault growth model that does 
not change the value of C (i.e. F = 1, E = 0) was chosen 
for most of the model runs. The model was also run with 
F = E = 1 (Cowie & Scholz 1992c), and those results are 
shown along with the more numerous results with 
F - E = 1 .  

As noted earlier, using F = 1 and E = 0 as growth 
exponents implies an increasing moment release rate, 
which is not appropriate for a steady-state deformation. 
However, this choice of exponents may be appropriate 

(a) Flaws and faults (b) Faults only 
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Fig .  4. ( a )  S y n t h e t i c  f au l t  m a p s  c r e a t e d  b y  t h e  m o d e l  a f t e r  tx s t e p s  o f  
m o d e l  t i m e .  ( b )  S a m e  m a p s  as  ( a )  e x c e p t  t h a t  f l aws  h a v e  b e e n  
r e m o v e d .  A p e r i o d i c  b o u n d a r y  c o n d i t i o n  w a s  u s e d ,  so  a f au l t  t h a t  

l e a v e s  t h e  le f t  e d g e  c o n n e c t s  to  t h e  s a m e  f au l t  o n  t h e  r i gh t .  

for the early stages of a deformation episode during 
which time the power-law distribution is developed. 
With E = 0, the recurrence interval does not depend 
upon fault length, and every fault in the population has 
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the same recurrence interval. Initially, we ran models 
with small time steps, so that on average five faults 
experienced equivalent earthquakes for every incre- 
ment of time. Those results were not significantly differ- 
ent from models run with large time steps, in which all 
faults experienced equivalent earthquakes for each 
increment of time. Therefore, for the models described 
below, a step of model time is equal to the recurrence 
interval of all of the faults in the population. 

Figures 3, 4 and 5 graphically show the implemen- 
tation of the linkage model. The following four steps 
summarize the computer model used to implement nu- 
merically the linkage model. 

1. Random positions are assigned to 500 flaws of 
length L0 = 5 parallel to the x-axis (a unimodal distri- 
bution). For each step of model time the following steps 
are performed. 

2. For each flaw or fault tip, a search for other tips is 
performed. This is done in concentric circles with in- 

creasing radii until rma x (equation (15) and Fig. 3) is 
reached. 

3. If a 'nearby' flaw or fault tip is found within the 
search circle, then linkage will occur as long as linkage 
creates a longer fault than would occur by fault growth 
(this criteria is implemented so that flaws and small 
faults do not slow the growth of large faults). The y- 
coordinate of the new fault is determined from the ratio 
of the lengths of the two old faults and their y-parallel 
separation (Fig. 3a). Alternatively, if a 'nearby' fault or 
flaw tip is not present, the flaw or fault grows by 
A L  = 2 L / 2 .  

4. Once this process is completed for both tips of all 
flaws and faults in the population, the fault length 
distribution is recorded. Steps 2 to 4 are iterated until the 
longest fault reaches the length of the model area. 

The model generates a list of flaw and fault lengths at 
the end of each step of model time. We sort this list into 
descending length rank order, delete the flaws and plot 
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Fig. 5. Log-logplotsoffauit lengthdatasets.  (a) The top graph shows the results produced by the standard model with flaw 
distribution shown as vertical lines. (b)  & (c) Model results of varying parameters from the standard model. The flaw 
population is not shown in these graphs. Notice the rollover which occurs on the last cycle on all data sets. In the model, the 

rollover occurs when the longest faults approach the length of the model region. 



288 T .T .  CLADOUHOS and R. MARRETT 

log number vs log fault length. A linear fit of the plot 
fixes the power-law exponent, C. 

Linkage model results 

A standard model with initial flaw density (py) set at 
0.006 (500 x 5/6502), the search circle parameter (k) set 
to 0.5, and the fault growth model exponents of E = 0 
and F = 1 was run four times. To investigate the effect of 
changing the first two parameters, the model was run 
twice, each with pf = 0.003, pf = 0.012, k = 1, k = 0.33, 
and F = E = 1. Flaw density was varied by reducing the 
number of initial flaws to 250 or using 325 units for the y 
dimension of the model area. The power-law exponent 
(C), linear correlation coefficient, number of faults, and 
the total fault length for all fourteen models were calcu- 
lated and graphed as a function of model time in Fig. 6. 

Do the synthetic fault populations fit a power-law 
length distribution? Yes. The three graphs in Fig. 5 show 
25 fault populations, and 17 of those have linear corre- 
lation coefficients greater than or equal to 0.95. The 
fourth row of Fig. 6 shows the correlation coefficients for 
all fourteen model runs. The linear fit can be poor when 
the fault population set is small; however, once the 
population includes more than 30 faults, R 2 -> 0.95 for 
85% of the model results. In all the model runs, when 
the longest fault approaches the length of the model 
region, the long faults of the data sets define a steeper 
trend known as rollover (Fig. 5a). Like the rollover 
observed in the data presented in Fig. 1, the longest 
model faults were left out of the linear fit when rollover 
was observed. 

How does the power-law exponent evolve? As shown 
in the third row of Fig. 6, C starts at high values (6.7-3) 
and decreases to between 2.4 and 0.9. In some cases, C 
increases slightly before decreasing. Importantly, C 
does not evolve to a constant value in the model. The 
decrease of C was ultimately limited when the length of 
the longest fault in the population reached the length of 
the model, and the model was stopped. There is no 
reason to believe that C would not continue to decrease 
if the model were larger. 

I f  all is held constant, is there a random variation of the 
results? The standard model was run four times, and 
each of the other models run twice, so the importance of 
the initial random positions of the flaws can be assessed. 
When few (10-15) faults exist in the fault populations, 
the values of C can vary significantly between models 
with the same parameters; however, after more model 
time has passed and the fault populations contain more 
faults, the variation among like models is small (Fig. 6, 
row 3). 

How do the synthetic results created by a growth model 
with F = E = 1 compare to the synthetic results with 
F = 1 and E = 0? The last column of Fig. 6 shows the 
results for F = E = 1. In contrast to the other model runs 

in which the recurrence interval is not a function of fault 
length (E = 0), in these two model runs the recurrence 
interval increased with fault length (E = 1). Qualitat- 
ively, the results are quite similar to the other twelve 
models; most importantly, C continuously decreased 
with model time. The final values of C are higher 
(steeper slopes) than for the other models, because the 
long fault growth was inhibited by long recurrence 
intervals. 

How does altering the values of  the parameters affect 
the outcome? The effects of changing the adjustable 
parameters are predictable and only affect the rates of 
fault growth (Figs. 5 and 6). Increased fault density (pf = 
0.012) or a larger search circle (k = 1) speeds the linkage 
process, causing C to decrease more rapidly. Decreased 
fault density (Of = 0.003) or a smaller search circle (k = 
1/3) slows the linkage process, causing C to decrease 
more slowly. Of course, model time is dimensionless; it 
is more instructive to normalize the model time axis by 
calculating the total fault strain for each model and then 
comparing the results. Strain is calculated by summing 
the geometric moments (Marrett & Allmendinger 1990, 
1991) for the faults in the population, dividing by the 
deformed area to calculate total shear strain, and then 
recasting as natural strain (see Fig. 7 caption for more 
details). The 14 curves in Fig. 7 show a large variation of 
C at low strain, due entirely to random variation of the 
initial conditions, not the values of the adjustable para- 
meters. At higher total strain (e > 0.01), C varies 
between 0.9 and 1.6 for F = 1, E = 0 and between 1.8 
and 2.4 for F = E = 1. Also notice that while the value of 
C may be showing asymptotic behavior, C---> 0 is more 
likely than C ---> 1. 

DISCUSSION OF THE FAULT LINKAGE MODEL 

A simple geometric model incorporating fault growth 
and fault linkage produces a power-law distribution of 
fault lengths from a random spatial distribution of flaws. 
The model results also show a systematic decrease of the 
value of C (no equilibrium value of C was achieved). 
Next we compare the results from this model to actual 
fault length data (i.e. Fig. 1) and another model which 
simulates fault nucleation, linkage and growth (Cowie et 
al. 1993, 1995). 

The linkage model produces a rollover (steeper trend) 
at long faults much like real data sets (compare Figs. 1 
and 5). Marrett & Allmendinger (1992) attributed rol- 
lover of long faults to be due to sampling artifacts. 
Another interpretation is suggested by this model. Roll- 
over in the model population occurs because the longest 
faults (those approaching the length of the model re- 
gion) are unable to grow at rates sufficient to maintain 
the power-law distribution defined by the shorter faults. 
For example, to prevent rollover in Fig. 5(a), each of the 
eight longest faults would have had to more than double 
their length in the ninth growth cycle. This would be 
possible in a longer model region, but not when the 
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Fig. 7. Graph of power-law exponent versus natural strain due to faults. Strain was calculated by the method described in 
Marrett & Allmendinger (1990, 1991). A plate thickness of unity and a displacement relationship of D = L/IO0 were 
assumed (Scholz & Cowie 1990). This allows the geometric moment (Mg) of each model fault to be calculated from the fault 
length: Mg = L21100. The geometric moments for all faults were summed and the sum divided by the volume (650 x 
650 x 1). This gives the total shear strain X, which can easily be recast as natural strain, e = ln0,/2 +1). Many more 
uncertainties are inherent in applying this procedure to natural fault populations. Most importantly, without knowing the 
orientations of faults, a tensor summation (Marrett & AUmendinger 1990) cannot be performed and the strain calculated 
must be considered a maximum. Other problems include choosing the thickness of the plate which the faults strain, and 
deciding whether the faults are large (faults that fully cut the plate) or small (faults that do not cut the plate). Despite these 
problems, strain was calculated for natural fault populations of Fig. 1, in order to directly compare that data to the model 
data. Except for two data sets (Chimney Rock and Yucca Mountain), natural strain was calculated using the large fault 
equation for geometric moment as was done with the synthetic data. The areas used for each data set are given in Fig. 1. The 
deformed volumes need not be calculated, as the plate thickness drops out of the equation for large faults. Except for two 
other data sets (Laramide and Basin-Range), the strain was also calculated using the small fault equation for geometric 
moment: M s = (:d4) L3/lO0. In this case the areas were multiplied by a thickness of 10 km to calculate volume. For data sets 

in which strain was calculated by both methods, a line connects the points of the same data set. 

0.1 

longes t  faul ts  a re  a l r eady  half  the  length  of  the  m o d e l  
reg ion .  Since mos t  fau l ted  reg ions  are  finite in size 
because  of  s t ra t ig raph ic  o r  s t ruc tura l  b o u n d a r i e s ,  pe r -  
fect  faul t  l ength  da t a  f rom mos t  a reas  m a y  show ro l lover  
on  a l o g - l o g  p lo t  for  the  s ame  reason  as the  mode l .  

In  all of  the  l inkage  mode l s ,  the  va lue  of  C dec rea sed  
sys temat ica l ly  wi th  faul t  s t ra in ;  t he re  is no  ev idence  tha t  
C a p p r o a c h e d  a cons tan t  in the  m o d e l  runs  (Figs.  6 and  
7). L ikewise ,  in the  na tu ra l  p o p u l a t i o n s  shown in Fig.  7, 
the  r e l a t ionsh ip  b e t w e e n  C and  faul t  s t ra in  is inconclus-  
ive;  it  is no t  poss ib le  to  assess w h e t h e r  faul t  l inkage  is 
i m p o r t a n t  at  all s tages  of  faul t  p o p u l a t i o n  evolu t ion .  F o r  
e x a m p l e ,  if it were  o b s e r v e d  tha t  C reaches  an equi l ib-  
r ium with  r e spec t  to  faul t  s t ra in  in na tu ra l  popu la t i ons ,  

this could  ind ica te  tha t  l inkage  ceases  to be  an i m p o r t a n t  
p rocess  of  faul t  growth .  I n d e e d ,  the  faul t  l inkage  m o d e l  
maximizes  the  poss ib i l i ty  o f  l inkage ,  and  especia l ly  
favors  l inkage  of  longe r  faul ts  because  the  faul ts  a re  
para l le l .  Because  l inkage  d e p e n d s  cri t ical ly u p o n  the  
o r i en t a t i on  of  the  faul ts ,  l inkage  in na tu ra l  p o p u l a t i o n s  
m a y  no t  a lways  be  poss ib le ,  and  g rowth  by  t ip p r o p a g a -  
t ion m a y  d o m i n a t e .  In  popu la t i ons  of  non-pa ra l l e l  
faul ts ,  l inkage  could  be  suppressed ,  l ead ing  to  a stabil iz-  
a t ion  o r  even  inc reased  va lue  of  C. 

F igure  8 is a s chemat i c  d i a g r a m  showing the  processes  
govern ing  the  evo lu t ion  of  a m o d e l  faul t  p o p u l a t i o n  
th rough  C-faul t  s t ra in  space .  A t  any t ime ,  the  evo lu t ion  
of  the  synthe t ic  faul t  p o p u l a t i o n  d e p e n d s  on the  ba lance  
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Fig. 8. Schematic diagram showing processes governing the evolution of a model fault population through C-fault strain 
space. As an example, the results from the model run Standard #4 are shown. See text for further explanation. 

of three competing processes. Birth of new faults (by 
coalescence of flaws) increases the number of small 
faults without affecting the length of the long faults, 
increasing the value of C and simultaneously increasing 
the total strain. For the first two steps of model time, this 
process dominated in the example population shown. 
Fault growth by slip events was discussed in the first part 
of this paper. It was shown that in order to maintain a 
power-law distribution, a population fault growth model 
must also preserve the value of the power-law exponent. 
Thus, the population fault growth model plots as a 
horizontal line in Fig. 8. In contrast, the single-fault 
growth model (F = E = 1, Cowie & Scholz 1992c) causes 
C to increase with accumulated fault strain (Fig. 2); 
therefore, that model's vector in C-fault strain space 
points upward. The results of the fault linkage model 
(Figs. 6 and 7) show that linkage, which cannibalizes 
small faults to create larger faults, decreases the value of 
C while increasing total fault strain. In the example 
population shown, fault linkage dominated after the 
second step of model time, and C continuously de- 
creased with total fault strain. The effect of two addi- 
tional processes (birth of small faults and death of large 
faults) is also shown in Fig. 8, although this model 
simulated neither. In summary, for the population fault 
growth model (F = E =1), Fig. 8 shows that as long as 
fault linkage occurs and is not balanced by birth of small 
faults or death of large faults, the value of C will 
systematically decrease with increased fault strain. Even 

with the single-fault growth model (F = E = 1), which 
causes C to increase, fault linkage dominated and the 
value of C decreased with fault strain (Fig. 7). If fault 
linkage and single-fault growth were carefully balanced, 
it might be possible to stabilize the value of C with 
respect to fault strain (a horizontal line on Fig. 8). 

Cowie et al. (1993, 1995) develop and discuss a nu- 
merical rupture model which is used to simulate the 
nucleation and growth of faults in a plate. Their model 
starts with an 180 x 180 element lattice with a random 
spatial distribution of yield stress. When a constant 
velocity is applied along one edge of the lattice, fault 
nucleation, growth and linkage are simulated. The link- 
age model developed in this paper is strictly geometrical 
(nearness of fault tips), while the Cowie et al. (1993, 
1995) model simulates anti-plane shear deformation of 
an elastic material. Despite the major differences in the 
model setup, the results produced by the two models are 
broadly similar. Both models produce a power-law dis- 
tribution of fault lengths from a random spatial distri- 
bution of strength (flaws or yield stress elements). In 
both models, the values of C begins at a large value and 
decreases to less than 1.5 as fault strain increases. Cowie 
et al. (1995) argue that a constant value of C is eventually 
achieved when the deformation in the plate reaches 
saturation; in both models the decrease of C is limited by 
the small size of the model. Given much larger models, 
the value of C would probably continue decreasing in 
both cases. 
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CONCLUSIONS 

A population fault growth model designed to insure a 
constant power-law distribution of fault lengths is sig- 
nificantly different to single-fault growth models, espe- 
cially if constant moment release rate is required of the 
fault population. For the two types of models to con- 
verge, one or more of the assumptions of the population 
fault growth model must be rejected. 

One possible solution to the dilemma is that fault 
linkage plays an important role in maintaining the 
power-law distribution. Indeed, it was found that link- 
age is a very effective process for creating a power-law 
length distribution from a population that initially does 
not have a power-law distribution. However, fault link- 
age does not cause the power-law exponent (C) to reach 
an equilibrium as fault strain increases. 

More sophisticated models which attempt to balance 
the effects of various processes that affect a fault popu- 
lation's journey through C-fault strain space (Fig. 8) may 
be possible. It is also of critical importance to determine 
the relationship between C and fault strain in natural 
populations. Perhaps the power-law exponent's value 
and its evolution with increasing fault strain could reveal 
important information about the processes operative 
during fault growth. 
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